Prevention and Treatment of Urinary Stone Disease

Cumulative Recurrence of Stone-Formation in UK

Stone Recurrence Rates 3 Years After Various Urological Procedures for Stone Management

Age at Onset of Stones in Males

Age at Onset of Stones in Females

Life-Time Expectancy of Stone-Formation in Men Aged 60-70 in Various Countries

URINARY STONES

WATER (7%)

MINERAL (90%)

Calcium oxalate Calcium phosphate Magnesium ammonium phosphate

Uric acid/urates ----Cystine

Xanthine

2,8-Dihydroxyadenine

Silica

Insoluble drugs (eg Indinavir, Triamterene etc) Mucoprotein Protein

ORGANIC MATRIX 3%)

Predominant Mineral	KSA (%)	USA (%)	UK (%)	KSA/UK* Ratio
Uric acid	14.6	10.1	4.5	5.1
CaOx	71.3	58.8	53.8	2.1
CaP	7.6	20.3	30.9	0.4
MAP	3.7	9.3	9.6	0.6
Rare	2.8	1.5	1.7	2.6

* Including overall Saudi/UK prevalence ratio in adults of 1.6:1

Mineral Solubilities in Water at 37°C and pH 6

Mineral	Maximum Solubility (g/litre)
Calcium oxalate	0.0071
Calcium phosphate	0.08
Magnesium ammonium p	phosphate 0.36
Uric acid	0.08
Cystine	0.17
Calcium sulphate	2.1
Calcium citrate	2.2
Magnesium sulphate	293
Calcium chloride	560

Simplest Model of Urinary Stone-Formation

Free-Particle Model

- 1. Crystal nucleation
- 2. Crystal growth and agglomeration
- 3. Retention of critically-sized particle
- 4. Growth of trapped particle into stone

CaOx Crystals and Aggregates Growing in Urine

µm

µm

µm

Calcium Oxalate Microstone

Diagram of Kidney

Free-Particle Model of Stone Initiation Urine containing crystals flowing down collecting tubules

Crystals growing and agglomerating

> Critical particle trapped in tubule

Particle adheres to damaged site on tubule wall and other crystals agglomerate with it

Fixed-Particle Model of Stone Initiation

Supersaturation of Urine

Cystine Stone-Formation

Stone:Cystine (+calcium phosphate)Occurrence:~1%Age:Child and adultGender:Male and female

<u>Abnormal</u>

Normal

24-h Urine cystine ↑↑
24-h Urine lysine ↑↑,
arginine ↑↑, ornithine ↑↑

Calcium metabolism MSU

Risk Factors for Uric Acid Stone Disease	
Pre-Urinary	Urinary
↓ Renal NH ₃ production lleostomy	↓ pH
Gout ↑ Purine intake Glycogen storage disease Lesch-Nyhan syndrome Neoplastic disease	↑ Uric acid
↑ Percutaneous loss of fluid Diarrhoea Ileostomy	↓ Volume

Uric Acid Stone-Formation

Stone:Uric acid (+calcium oxalate)Occurrence:~5%Age:30 - 70Gender:Male > female

Abnormal Plasma uric acid \uparrow 24-h Urine uric acid \uparrow , 24-h Urine pH \downarrow 24-h Urine volume \downarrow

<u>Normal</u>

Calcium metabolism MSU

Other Features

lleostomy

Risk Factor Model of Uric Acid Stone-Formation

Additional Features of Infected Stone-Formation

- There is a metabolic abnormality in > 50% of patients with infection stones
- Any anatomical abnormality may lead to infection
- Ammonia may cause damage to protective GAG layer
- Recurrence in 10% of patients after complete removal
- Recurrence in 85% of patients if fragments remain
- Antibiotics may suppress bacteriuria and afford symptomatic relief but rarely totally eliminate infection in the presence of calculi

Calcium Stone-Formation

Inhibitors and Promoters of Crystallisation in Urine

INHIBITORS

Citrate, Pyrophosphate, Magnesium, ADP, ATP, Phosphocitrate, Glycosaminoglycans, Tamm-Horsfall Mucoprotein, Uromodulin, (Osteopontin), α -1-Microglobulin, β -2-Microglobulin, Urinary Prothrombin Fragment 1, Inter- α -Inhibitor

PROMOTERS

Uromucoid (Polymerised THM), Matrix Substance A

Normal Subjects

RSF

Recurrent CaOx Stone-Former (RSF)

Severity of Calcium Stone Disease and Crystalluria

Risk Factor Model of Calcium Stone-Formation

Urinary Risk Factors for Calcium Stone-Formation

- Low urine volume
- Mild hyperoxaluria
- Increased urinary pH
- Hypercalciuria
- Hypocitraturia
- Hyperuricosuria
- Hypomagnesiuria

Urinary Risk Factors in Stone-Formers and Normals

Risk Curves for Urinary Risk Factors for Stone-Formation

SD Units from Mean Value in Normal Population

Example of Risk Accumulation in a "Normal-Looking" Urine from a CaOx/CaP Stone-Former Compared with that of a Normal

	Patient (AGW)	Normal (JHT)
Volume (litre/day)	1.50	1.65
рН	6.10	6.00
Calcium (mmol/day)	5.98	5.50
Magnesium (mmol/d	ay) 3.62	4.50
Oxalate (mmol/day)	0.40	0.35
Uric acid (mmol/day)	3.66	3.20
Citrate (mmol/day)	2.11	2.50
P _{SF} (CaOx)	0.85****	0.35
P _{SF} (CaOx/CaP)	0.90***	0.36
P _{SF} (CaP)	0.67**	0.42

Idiopathic Calcium Stone-Formation

Stone:Calcium oxalate and/or
calcium phosphate or uric acidOccurrence:70%Age:15 - 75Gender:Male > female (3:1)

Abnormal 24-h Urine volume ↓ 24-h Urine pH ↑ 24-h Urine calcium ↑ 24-h Urine oxalate ↑ 24-h Urine uric acid ↑ 24-h Urine citrate ↓ 24-h Urine magnesium ↓ <u>Normal</u> Plasma Ca, P_i, PTH MSU

Risk Factor Model of Calcium Stone-Formation

Epidemiological Risk Factors for Calcium Stone-Formation

Age Gender Season Climate **Fluid Intake Stress Occupation** Affluence Diet **Metabolic disorders Genetic disorders**

Prevalence of Urinary Stone Disease in Men

Other Dietary Factors Influencing Urinary Stone-Formation

- ↑ Calcium
- ↓ Calcium
- ↑ Oxalate
- ↑ Sodium -
- **†** Refined sugars
- ↓ Fibre
- **↑ Fibre**
- ↓ Magnesium

- ↑ Urinary calcium
- ↑ Urinary oxalate
- ↑ Urinary oxalate
 - ↑ Urinary calcium
- ↑ Urinary calcium
- ↑ Urinary calcium
- \downarrow Urinary volume
 - \downarrow Urinary magnesium

Occupation, Low Urine Volume and Urolithiasis

Occupation	Percent of Male Stone-Formers	Urine Volume (litre/day)
Taxi-Drivers, Chauffeurs	5.6	1.42 ± 0.27
Chefs, Kitchen-Workers	6.3	1.31 ± 0.34

Dietary Risk Factors for Stones in Saudi Arabia

Dietary Constituent	UK	USA	KSA	
Animal protein (g/day)	61	85	87	
Calcium (mmol/day)	24.5	25.0	13.0	
Oxalate (mmol/day)	1.4	-	3.8	
Purine (mg/day)	150	257	265	
Oxalate/Calcium	0.06	-	0.29	

Medical Management of Urolithiasis

Objectives:

- To identify the particular risk factors for stoneformation in the patient concerned
- To reduce the supersaturation of urine with respect to the stone-forming mineral concerned in order to minimise the risk of forming abnormal crystals and aggregates in urine
- This may be achieved by means of dietary and/or medical treatment

Medical Management of Non-Calcium-Containing Stones

Stone	Treatment
2,8-DHA	Very high fluids + allopurinol
Xanthine	Hereditary: High fluid intake + alkali (pH >7.4) latrogenic: Withdraw allopurinol
Cystine	Very high fluids + alkali (pH >7.5) or D-penicillamine or α -mercaptopropionylglycine
Uric acid	High fluids + alkali (pH >6.2) or reduce purine intake or allopurinol
Infected	Antibiotics + high fluids + oral acid (pH <6.2)
latrogenic	Discontinue drug concerned and replace with alternative treatment + high fluids

Medical Management of Calcium Stones

Patient Type	Treatment
Idiopathic	High fluids + relevant dietary advice or thiazides or phosphate or magnesium supplements or potassium citrate (K ₃ Cit)
Hyperparathyroid	Parathyroidectomy or high fluid + acids
1° Hyperoxaluric	High fluids + pyridoxine
2° Hyperoxaluric	High fluids + low Ox + high Ca or K ₃ Cit
Distal RTA	High fluids + thiazides or K ₃ Cit
MSK	Treat as for idiopathic
Corticosteroid	Discontinue steroids; treat as idiopathic
Milk-alkali syndrome	Discontinue alkali; reduce Ca + fluids
Vit D intoxication	Discontinue vitamin D supplements

Problems in the Medical Management of Patients with Urinary Stones

- It is impossible to treat stone patients satisfactorily without proper biochemical screening and this has been abandoned by many hospitals world-wide
- Most stone patients feel well most of the time apart from the occasions when they have renal colic
- It is difficult to motivate them to keep to their dietary or medical treatment over a long period and their biochemical risk of forming stones increases (the Anti-"Stone Clinic Effect")

The Anti-"Stone Clinic Effect"

